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Quantitative muscle MRI (QMRI) has emerged as a promising non-invasive biomarker for assessing neuromus-
cular diseases (NMDs). However, clinical implementation is limited by the significant time required for manual
muscle segmentation, which restricts analysis to limited muscle regions rather than comprehensive whole-muscle
assessment. The 286th European NeuroMuscular Centre (ENMC) workshop brought together 18 international
participants from 10 countries to establish consensus on optimal gMRI acquisition protocols and automated
analysis tools, revealing that while most centers utilize qMRI techniques, barriers to manual segmentation
include limited expertise and excessive time requirements. Automated segmentation methods using machine
learning architectures, particularly 3D U-Net models, have demonstrated promising results for individual muscle
segmentation. Multi-center studies are starting to implement standardized protocols, while machine learning
approaches can distinguish among many NMDs with higher accuracy than human experts. Data sharing plat-
forms and federated learning approaches address the need for larger NMD cohorts with standardized and vendor-
agnostic data formats, while maintaining patient privacy. The integration of automated 3D muscle segmentation
tools integrated into clinical workflows represents a transformative advancement to revolutionize diagnosis,
disease monitoring, and therapeutic assessment in NMDs. This consensus workshop provides a roadmap for
accelerating the translation of qMRI from research tools to clinically implemented biomarkers for NMD
management.

1. Introduction and background

Multiple novel therapies are in development for neuromuscular
diseases (NMDs). However, assessing the efficacy of these promising
treatments is limited by the lack of sensitive, standardized and repro-
ducible methods to assess subtle disease progression or therapeutic
response [1,2]. Magnetic resonance imaging (MRI), and particularly
quantitative muscle MRI (QMRI), has emerged as a non-invasive imaging
biomarker to distinguish important structural changes like fat replace-
ment, muscle volume and edema in NMDs [3-8]. Qualitative and
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semi-quantitative MRI studies have demonstrated characteristic imag-
ing patterns using visual and signal-density assessment of fat replace-
ment to provide a diagnostic pattern for several NMDs [8-11]. Although
qualitative imaging analysis permits subjective categorising of disease
features, such as the extent of signal intensity on T; weighted and Ty
weighted MRI protocols, qMRI techniques are more sensitive in
detecting subtle changes and offer a more objective assessment [5,12,
13]. QMRI techniques, including chemical-shift-based-fat-water (Dixon)
imaging techniques, transversal relaxation time (T2) mapping (either
water T2 or global T2), and diffusion tensor imaging, are more sensitive
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to the variable pathological changes in muscle tissue, compared to
traditional semi-quantitative visual assessment of muscle fat/edema
[13-21]. Beyond diagnostic applications, qMRI approaches are
emerging as sensitive and reproducible biomarkers, and provide evi-
dence of disease progression, which is critical for use in clinical trials
[22,23]. Yet, the challenges of the scarcity of annotated qMRI scans, the
variable NMD progression in each muscle and the high number and
rarity of different NMDs, all provide barriers to using qMRI to identify
diagnostic patterns and to assess disease progression or therapeutic
response in research settings. The current necessity of time-consuming
manual segmentation and the inaccuracy of automated segmentation
algorithms hinder clinical implementation.

For gMRI, muscle segmentation is required to identify muscle regions
of interest (e.g., to extract quantitative parameters of muscles) and to
distinguish them from subcutaneous and perimuscular adipose tissues
and bone. Manual muscle segmentation is operator dependent and
extremely time-consuming, which has limited the clinical implementa-
tion of QMRI and evaluation of these biomarkers in large cohorts [1].
Consequently, gMRI analyses are typically performed on part of a limb
only using a limited number of slices in the center of the limb [5,12,24,
25]. This also limits the ability to fully assess the entire length of the
involved muscle, which may be differentially affected in regions of the
proximal-distal axis [26-28]. A full whole-muscle fat assessment would
therefore provide a better way of identifying disease progression. There
is a critical need for the integration of reliable automatic 3D segmen-
tation methods over the whole limb and throughout the length of the
muscle to improve diagnosis and disease progression for clinical trials.

More recently, machine learning strategies have been able to
distinguish >10 NMDs based on MRI scans, depicting fat replacement
with higher accuracy than human experts in the field. This provided a
critical proof of concept demonstrating that artificial intelligence (AI)
can be applied to the field of muscle MRI in NMD [29,30]. However,
given the burden of time and expertise required for scoring images
across a large range of hundreds of NMDs, automatic segmentation
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methods and feature extraction are required [31]. Several Al-enabled
automated segmentation methods aim to segment individual muscles
(or muscle groups), using data from numerous acquired MRI slices to
permit more complex analyses, to reduce processing times and to
eliminate interobserver bias [1,31,32]. However, automation of muscle
segmentation in MRI is very challenging in NMD where muscle borders
are obscured by severe fat replacement, given the poor contrast between
different muscles and the large variability of muscle shapes [1,32].

The 286th ENMC international workshop was held in Hoofddorp,
The Netherlands, from March 7th-9th, 2025 to discuss barriers and
strategic opportunities for implementation of qMRI techniques and
assessment tools. The workshop assembled 18 participants from 10
countries, including France, Italy, The Netherlands, Denmark, Belgium,
Switzerland, Germany, Canada, United States of America (USA) and
United Kingdom (UK), comprising clinicians and researchers from
NMDs, MRI and machine learning disciplines. The aims for this work-
shop were to establish international consensus for optimal muscle qMRI
acquisition protocols, data storage and post-processing and analysis
tools to increase clinical trial readiness internationally; review manual
and automated imaging segmentation methods and discuss their reli-
ability, reproducibility, and limitations in the context of NMD; review
machine learning diagnostic approaches in MRI assessment and inter-
national imaging sharing platforms to support building larger cohorts
for machine learning while ensuring imaging security, patient privacy in
qMRL

2. Preworkshop questionnaire: Evaluating quantitative use of
muscle MRI, muscle segmentation and data sharing

A preworkshop questionnaire was completed by attendees to assess
current implementation of gMRI, muscle segmentation and data sharing
(Fig. 1). Manual segmentation was widely used for natural history and
therapeutic studies, but faced barriers to implementation, such as limi-
tations in anatomical knowledge of the vast number of muscles across
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Fig. 1. Pre-workshop survey responses regarding muscle MRI utilization within participants' respective academic institutions. (A) Currently implemented muscle
qMRI sequences; (B) Anticipated applications for expanded gqMRI implementation; (C) Identified barriers limiting manual muscle segmentation adoption; (D) Ob-
stacles to implementation of semi-automatic and automatic segmentation methodologies.
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their length, limited technical expertise, poor image quality, and time
demands required for segmenting each muscle at different regions.
Automatic or semi-automatic segmentation was employed by many
centres, though challenges included insufficient tool quality, tool se-
lection difficulties, and technical limitations, with most analyses
focusing on the lower extremities. Automatic/semi-automatic segmen-
tation was being used to assess thighs (17/19), lower legs (16/19), upper
extremities (9/19), trunk and pelvis (2/19) and no participant assessed
head muscles, skull or brain, reflecting the use of a longstanding focus of
MRI for lower extremities. However, imaging solely the lower extrem-
ities will miss some critical muscles for pattern recognition of specific
disorders, such as tongue involvement in oculopharyngeal muscular
dystrophy [21,33], and trapezius involvement with subscapularis
sparing in facioscapulohumeral muscular dystrophy (FSHD) [34]. In
addition, it is important to assess both sides individually given potential
asymmetry of fat replacement or edema between limbs [28,35,36]. Data
sharing relied on tools like MYO-Share and XNAT but was hindered by
strict privacy regulations, incomplete consent, and technical constraints.
For this survey, it is important to note that survey respondents
comprised ENMC workshop attendees who were specifically invited
based on their expertise in muscle segmentation and therefore may not
be representative of the broader muscle MRI research community.

3. Muscle imaging: Artificial intelligence, automatic
segmentation and imaging data sharing in neuromuscular
disease workshop sessions

Following introductory remarks by Patricia van Dongen, Programme
Manager of ENMC, Volker Straub, (UK), opened the 286th ENMC
workshop by outlining the importance of assembling the required
expertise to establish international consensus for optimal muscle qMRI
acquisition protocols, data storage, and post-processing and analysis
tools to increase clinical trial readiness internationally. The workshop
goals were highlighted, including optimizing and standardizing qMRI
assessments, comparing segmentation methods, exploring machine
learning applications, reviewing international imaging platforms, and
addressing imaging security and patient privacy in NMD.

3.1. Current state of integrating qualitative MRI muscle segmentation:
implications for clinical practice

Pierre Carlier (France) provided an overview of the standard muscle
gMRI techniques. Under the hypothesis that a “standard” quantitative
skeletal muscle imaging protocol exists, it can comprise Dixon imaging
sequences, the multi-TE spin echo sequence (MESE) and the diffusion
tensor imaging sequences (DTI), by decreasing order of popularity and
use. With the Dixon sequences, muscle trophism and fat replacement can
be determined. With the MESE sequence, water T2 maps are generated,
which evaluate the disease activity while DTI sequences provide infor-
mation on myocyte orientation, dimensions and permeability. Whole-
body gMRI is possible with modern scanners even in a clinical envi-
ronment, thanks to a variety of acceleration techniques combined with
Al denoising. For instance, whole body 3D Dixon with isotropic milli-
metric resolution is currently obtained in 4 to 10 minutes at 1.5T.

Hermien Kan (The Netherlands) presented an overview of manual
segmentation, including the technical factors influencing segmentation,
the gold standard and quality metrics often used. Manual segmentation
is used to delineate individual skeletal muscles, usually on transverse
MR images. Segmentation aims to provide muscle or region specific
gqMRI values, which can, for instance, be volume, fat fraction (FF) or
water T2, per slice and per muscle. This can be used to aid in the dif-
ferential diagnosis of NMD, as these have different patterns of muscle
involvement, and to assess disease progression over time. For any
quantitative parameter to be used for these purposes, is the value ob-
tained reproducible and repeatable. Quality metrics that are commonly
used are the Dice-Sorensen coefficient (DSC), or the intra-class
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correlation coefficient (ICC). Especially if the purpose of segmentation is
to provide biomarkers to assess disease progression or response to
therapy, an important quality metric is the sensitivity to change and the
relation to a functional outcome. The former can be assessed using the
standardized response mean (SRM), and the latter by association to
function — either cross-sectional or longitudinal. Dr. Kan explained that
there are many factors influencing segmentation, which can be divided
into parameters at the acquisition level and in post-processing. At the
scan acquisition level, it is necessary that the field-of-view covers a large
enough proportion of the muscle, preferably the whole muscle, as many
NMDs have proximo-distal differences in muscle involvement within the
muscles [27,37-39]. Also, scan resolution needs to be sufficiently high
to be able to delineate muscle borders. In post-processing, it is important
that there is either landmark with fixed distance to a bone, or the
insertion of a muscle, to make sure that assessments are done at the same
level of the muscle between subjects, and over time. Finally, there are
several practical considerations when drawing the regions of interest
(ROIs) when segmenting muscle. This includes which type of images are
used for drawing ROIs, whether muscles are delineated at the muscle
border, whether to include all acquired slices in the analysis, whether
single muscles are reported or muscle groups, and whether a single
reader should draw all muscles within a study.

Harmen Reyngoudt (France) described the challenges for incorpo-
rating manual muscle segmentation in multi-site analysis in the Inter-
national Clinical Outcome Study for Dysferlin (COS experience). QMRI
including Dixon-type sequences and water T, mapping by MESE/Multi-
Slice Multi-Echo (MSME) was part of the natural history Clinical
Outcome Studies (COS) in dysferlinopathy funded by the Jain Founda-
tion, in 14 different centers across the world (COS1 ran between 2012
and 2018) [24,40,41]. Successful manual muscle segmentation requires
high-quality and reproducible MRI data across multiple visits (acquisi-
tion made with same central slice, volume, field-of-view, in-plane res-
olution). Since there were 14 different centers acquiring qMRI data and
two different centers analyzing these qMRI data in COS, the analysis
plan was documented in detail in several standard operating procedures
(SOPs). To ensure validity between different centers, an essential step
was that both analysis sites segmented on the same slices, so that all
gMRI-based outcome measures were from exactly the same anatomical
location. ROIs were drawn twice but differently on the first-TE
MESE/MSME images on 5 slices in thigh and lower leg (Fig. 2), by
analysis team 1 delineating nicely the muscle contours for FF values but
especially for precise assessment of contractile cross-sectional area
(cCSA), and by analysis team 2 drawn inside the ROIs to avoid inter-
muscular/subcutaneous fat and fasciae, for water Ty [24]. In both seg-
mentations, visible blood vessels and tendons were avoided, and ROIs
were eroded when including subcutaneous fat. A third rater verified
coherence between both segmentations visually inspecting the ROIs
drawn on the FF maps and the water T, maps paying attention to (i)
similarity of ROIs drawn by both teams and (ii) major errors made in
segmentation of the smaller or more difficult muscles to draw, before all
gMRI results were merged into a single file with a FF, cCSA and water Ty
value per muscle per visit per subject. For COS2 (which ran between
2019 and 2023), the upper limb (arm and forearm) was also added to the
gMRI protocol, with identical instructions for data analysis [42].

Francesco Santini (Switzerland) reviewed the imaging data formats
and established ‘best practice’ standards in NMD imaging. Data sharing
is key for modern research, especially in the current era of pervasive Al
[43]. This is especially crucial in the field of NMD research, where the
rarity of many NMD necessitates data collection from multiple centers.
However, a high level of standardization is required for the efficient
development of postprocessing and analysis tools, both in terms of
acquisition modalities and in terms of data formats. The format sup-
ported by most medical imaging platforms is the “Digital Imaging and
Communications in Medicine” (DICOM) standard, which is a detailed
and flexible description of image data and metadata. However, this
inherent generality and flexibility made it less than ideal as a proper
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Fig. 2. gMRI in Jain COS in dysferlinopathy included two independent manual muscle segmentations performed on 5 slices of MESE/MSME data (first TE). Examples
in one slice of thigh and lower leg are shown. Segmentations were slightly different depending on the qMRI-based outcome measure (FF/cCSA vs. water T5). The
corresponding Dixon-based FF maps and MESE/MSME-based water T, maps (with the subcutaneous fat masked) are also shown.

standard, as each device manufacturer practically implements its own
proprietary “flavor” within the general framework of the DICOM stan-
dard, thus making the localization of relevant metadata for a specific
purpose difficult in a reliable way [44]. For this reason, more specialized
standards have been developed, starting with the Brain Imaging Data
Structure (BIDS), a standardized way of organizing Neuroimaging
Informatics Technology Initiative (NIfTI) imaging files in a folder
structure and pairing it with metadata in Javascript Object Notation
(JSON) format [45], subsequently extended to other districts and mo-
dalities, where it is sometimes referred to as MIDS (Medical Imaging
Data Structure) [46]. For musculoskeletal imaging, the Open and
Reproducible Musculoskeletal (MSK) Imaging Research (ORMIR) com-
munity (https://ormir.org) further developed the ORMIR-MIDS stan-
dard and associated support software [47], building on a previous
initiative by muscle MRI researchers (https://muscle-bids.github.io/).
ORMIR-MIDS strives to be bidirectionally convertible with DICOM,
inherently anonymous, and to describe the relevant metadata to be
included in the JSON header for each common contrast used in muscle
and MSK imaging. ORMIR-MIDS also provides a command-line tool for
the conversion of DICOM data, automatically recognizing various con-
trasts from the main MR scanner vendors, and thus converting each
proprietary DICOM implementation into a common format, which can
then be relied upon for the implementation of vendor-agnostic pipelines.

3.2. Implementing quantitative MRI and segmentation strategies in
clinical practice

John Vissing (Denmark) reviewed challenges for incorporating
manual muscle segmentation. The largest obstacle is the highly time-
consuming workload of manual muscle segmentation, which precludes
segmenting multiple sections along the whole length of the muscle. By
just evaluating one or a few muscle sections, some muscle abnormalities
may be missed between the two insertion points and the CSA can be
underestimated. Also, identifying the pattern of proximal-distal
involvement of a muscle can be missed. In longitudinal studies, seg-
mentation of just one or a few slices also creates problems in finding the
same location for the section at follow-up. The question is also whether
to segment directly at the edge of the fascia or just within the fascia to
ensure that proper muscle tissue volume is assessed. For CSA estimates,
measuring on the fascia is preferred. A common issue is manual and

automatic segmentation of almost end stage muscle, where muscle
boundaries are difficult to define. However, end stage muscles do not
change over time and do not respond to currently known therapeutic
interventions. Therefore, this technical issue of assessment is less clini-
cally relevant. Automatic segmentation techniques are increasingly
being utilized, and this removes variability in interrater segmentation.
Lastly, he briefly mentioned the development plan for a Danish Al
muscle segmentation tool, which is currently in the final deep learning
round using an iterative training and correction process.

Glenn Walter (USA) discussed manual segmentation for a Duchenne
Muscular Dystrophy (DMD) cohort and regulatory challenges using MRI
as a recognized biomarker for trials. MR imaging has become a critical
tool for monitoring disease progression and evaluating therapeutic in-
terventions in DMD. This study highlights the role of manual segmen-
tation in standardizing MRI analyses, ensuring reproducibility, and
improving biomarker sensitivity across clinical trials. The ImagingDMD
initiative has expanded significantly, facilitating multi-center studies
aimed at accelerating therapeutic development. Standardization efforts
include detailed standard operating procedures (SOPs), training of
image readers, use of multiple contrast techniques, and strict quality
assurance measures. MRI and MRS, including maximal CSA (CSAmax),
global T2, and FF, were highly reproducible across sites, with co-
efficients of variation (CV) ranging from 2 % to 7 %. Landmark-based
segmentation methods enhance consistency in morphometric analysis,
particularly in the thigh and lower leg muscles, improving the detection
of disease progression. Data acquisition and adjudication protocols
incorporate blinded assessments to mitigate bias, ensuring robustness in
clinical trial applications. Their findings support the implementation of
standardized MRI protocols as reliable biomarkers for assessing muscle
degeneration and therapeutic efficacy in DMD. The continued refine-
ment of segmentation techniques and automated tools will further
improve imaging-based outcome measures in NMDs.

Mauro Monforte (Italy) discussed the different imaging features in
FSHD, and how they related to the well-known phenotypic heteroge-
neity of the disease, ranging from the classical to the most complex and
atypical clinical patterns. The Italian Clinical Network for FSHD is used
to categorize patients according to a standardized Comprehensive
Clinical Evaluation Form (CCEF) [48], that also incorporates uncommon
features identified during clinical evaluation. The main patterns of
preserved vs affected muscles and their combinations have been


https://ormir.org
https://muscle-bids.github.io/

J. Warman-Chardon et al.

described by MRI studies assessing large cohorts in FSHD, and further
diagnostic value can be clearly added by scanning the upper girdle [34].
A simple pattern (trapezius involvement and bilateral subscapularis
sparing) has been found to identify FSHD with high accuracy, also in
atypical or cases with incomplete phenotypes [30]. Complex phenotypes
in FSHD can also arise from a severe and predominant paraspinal muscle
involvement, or, in some cases, due to double-trouble, like the
co-occurrence with a distinct genetic NMD [49] or an acquired inflam-
matory myopathy [50].

Jasper Morrow (UK) presented his experience of muscle segmenta-
tion in inherited neuropathies. Using manual segmentation, calf muscle
FF using Dixon MRI has consistently proven the most responsive
outcome measure in this group of conditions [51]. Single slice analysis
of all grouped muscles has been the most commonly used metric. Precise
slice localization in the proximal-distal direction is crucial for improving
reliability, which is facilitated by 3D Dixon acquisitions with a
maximum of 5 mm slice thickness. Careful selection of patients and/or
anatomical level for analysis can markedly increase outcome measure
responsiveness by avoiding floor and ceiling effects [52]. Appropriate
training of segmenters is also crucial and he outlined the training pro-
gramme used at University College London, UK [18]. The quality of the
segmentation can be assessed by reference to gold standard segmenta-
tions, or through assessing test-retest or longitudinal datasets. Seg-
mentation is now performed using automated methods [53] requiring
minimal changes during a quality control step [19]. Automated seg-
mentation is more time efficient and allows for more detailed analysis of
datasets.

3.3. Automatic muscle segmentation in NMD - current techniques,
overcoming challenges in clinical practice

Lara Schlaffke (Germany) reviewed automated segmentation chal-
lenges in muscle MRL In an ideal world, clinicians would routinely ac-
quire whole-body quantitative images from all patients, which would
then be automatically segmented, analyzed, and reported to neurolo-
gists for diagnosis and disease progression monitoring. These images
would be uploaded to a centralized server, making them accessible to
researchers. However, several challenges must be overcome to achieve
this vision. One key challenge is improving communication among the
main stakeholders—radiologists, neurologists, and scientists—to estab-
lish a shared understanding of clinical requirements and research ob-
jectives. Theoretical challenges include reconciling the differing optimal
approaches for image acquisition, processing, and segmentation when
used for diagnostic purposes versus longitudinal follow-up. Practical
challenges involve ensuring sustainable system maintenance, addressing
personnel and financial constraints, and defining responsibilities for
outcome validation. For automated segmentation to be effectively used
in reporting whole-body quantitative outcome measures in patients
suspected of having NMDs, it is essential to establish clear communi-
cation regarding clinical and research needs, technological possibilities,
and future objectives.

Francesco Santini (Switzerland) spoke about centralized federated
learning in automatic segmentation. While the prevalence of NMDs,
collectively, is roughly equivalent to other better-studied disorders such
as multiple sclerosis or Parkinsons disease [54], each of them classified
as less common diseases, making any type of data-driven modeling
challenging, unless data from multiple centers are collated. However, in
healthcare, legal and practical hurdles make sharing patient data diffi-
cult and labor-intensive [55], and it is therefore attractive to train
models in a decentralized fashion, in so-called federated learning [56].
In this context, multiple institutions keep the data private from each
other, and each of them independently train a model; the models are
then centrally collected by a server and aggregated, before being
redistributed for another round of training. The performance of such a
system has been found to be similar to centralized learning [57]. A
variant of this system (termed continuous collaborative learning) is
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present in the free software Dafne [58] (Deep Anatomical Federated
Network, https://dafne.network/), in which a graphical interface is
provided to the end user. The user can use a segmentation model, which
is downloaded from a central server, to provide an automatic segmen-
tation of the desired anatomical region. The user can then use manual
tools to refine the proposed segmentation, and these modifications are
then used to retrain the model locally on the user’s data. The model is
then sent back to the server, validated on server-stored data, and, if
successful, merged with the baseline model and made available to the
next user. While this approach allows the model to improve its gener-
alization capabilities, the lack of a-priori data curation might make the
performance of the model unstable over time. In fact, centralized,
federated, and collaborative learning each fit different and comple-
mentary needs. Centralized learning provides the highest control over
the input and is ideal when a model needs to be applied to homogeneous
data, but it also requires high computational resources. Traditional
federated learning requires lower resources, but also all data to be
available at the same time, although not in the same place, to perform
the federated rounds; input control is more limited but can still be co-
ordinated. The Dafne approach, on the other hand, is the least resource
intensive, but does not allow a-priori control over the data quality, and it
therefore allows for the highest generalizability potential, at the cost of
slower convergence and potential performance instability.

Martijn Froeling (The Netherlands) outlined Al-based segmentations
and analysis for muscle MRI with standards for image acquisition and
automated data processing. Dr. Froeling described the MOTION study at
UMC Utrecht, where bilateral lower extremities of 162 healthy partici-
pants will be scanned using Dixon-based imaging, water T2 mapping,
and DTI with fiber tractography [59]. To analyze this data, automated
processing is employed, relying on the ORMIR-MIDS data structure and
the QMRITools processing toolbox [60]. An essential part of this study is
per-muscle analysis. To facilitate this, a lightweight 3D U-Net for auto-
mated segmentation was created. Since the U-Net architecture was first
proposed [61], many variants have been developed; however, the most
successful adaptation is nnU-Net [62]. This framework focuses on data
fingerprinting and proper configuration of the network rather than
tweaking the network itself. Since its introduction, it has become a
useful tool for muscle segmentation, even in muscle diseases [63].
Training a U-Net, especially in 3D, can require heavy computational
resources. Therefore, focus has been on developing a U-Net optimized
for the segmentation of either lower or upper leg muscles. Because the
network is optimized for one specific data type and task, the computa-
tional resources required for training are minimized. Furthermore, the
use of heavy data augmentation to reduce the amount of data needed for
training is essential. The segmentation network is fully integrated into
the automated processing software. Applying a trained neural network
to data is possible in most programming environments. However, inte-
grating such a network into existing processing software and allowing it
to be automated typically requires more effort. To facilitate the use of
tools on other datasets, it is recommended that tools are made
compatible with the BIDS data structure, and all commands can be run
from the command line so that they can be easily integrated into existing
processing scripts. To accelerate automated data processing, it is
important that data preprocessing is considered when designing a study
and the data is well curated. Standardized acquisition protocols are used
where possible while still allowing sufficient freedom for customization
where needed. It is unrealistic to expect that any type of data can be used
for any processing pipeline. Most tools will have limitations or require
specific data formats to function properly. Most free tools are a com-
munity effort and benefit from user input, feedback, and even contri-
butions to development when needed.

John Thornton (United Kingdom) described work aiming to move
gMRI with Al enabled segmentation towards implementation in clinical
radiology practice. QMRI outcome measures have been developed to
improve trials of new treatments for people with a wide range of NMD.
There is now a need to make these methods practically available to
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support diagnosis and treatment decisions, and improve follow-up, for
individual patients. One model for this is the Quantitative Neuroradi-
ology Initiative [64], which aims to make available to reporting radi-
ologists, within their routine workflow, graphical summaries of key
gMRI readouts. The MRI readouts must have a clear evidence base for
their clinical value, healthy population reference data must be available,
and a visual report format should be designed with technical and clinical
validation prior to clinical deployment. A significant challenge is the
integration within hospital information systems, so that qMRI reports
are available at PACS workstations following automated analysis and
automated data routing, with software developed under quality man-
agement satisfying regulatory requirements. He described the imple-
mentation of a model software infrastructure on this basis [65], allowing
them to deploy, as a first exemplar application, a qMRI radiology report
for epilepsy patients now used routinely in the hospital [66]-. They
recently established the MuscleQuant project to adapt this approach to
benefit patients with NMD. AI deep learning enabled automatic image
segmentation is a core enabling technology [19,53]. Developing an
appropriate graphical muscle qMRI report is the focus of current
research — a pressing open question is to resolve which are the most
important MRI readouts to include in the quantitative radiology report
to inform patient management and treatment decisions for specific
NMDs.

Kristl Claeys (Belgium) presented on automated MRI muscle seg-
mentation in patients with NMD. She discussed the study of her research
group on automated MRI quantification of volumetric per-muscle FF
values in the proximal leg of patients with muscular dystrophies [67].
This study presents and evaluates a clinically relevant approach for the
automated 3D segmentation of 18 individual muscles of the proximal leg
from knee to hip in healthy individuals and in patients with muscular
dystrophies and mild to severe fat replacement, using deep learning
models based on a 3D convolutional neural network (CNN) with U-Net
architecture [68,69]. To deal with pathology, a separate model was first
trained for healthy and mildly affected subjects (low level of fat
replacement (LI)) and subsequently retrained and finetuned for more
severe cases (high fat replacement group (HI)). She demonstrated the
feasibility of quantifying FF automatically in 3D in individual muscles
over a broad range of per-muscle FF values (4-92 %) with clinically
acceptable accuracy compared to manual analysis. She reported good
segmentation results of all 18 muscles individually in terms of overlap
(DSC) with the manual ground truth delineation for images with low fat
replacement (mean overall FF: 11.3 % [6-16.6]; mean DSC: 95.3 % per
image, 84.4-97.3 % per muscle) as well as with medium and high fat
replacement (mean overall FF: 44.3 % [18.6-82.1]; mean DSC: 89.0 %
per image, 70.8-94.5 % per muscle). Results from a Bland-Altman
analysis for quantification of FF and muscle volume in LI and HI cases
showed that the FF per muscle obtained using the automated segmen-
tation agrees well with the FF obtained using the ground truth delin-
eation: for LI mostly <1 % (except for a few outliers due to gluteus
minimus muscle); and HI: mostly <5 % [67]. The automated segmen-
tation model has meanwhile been extended to the distal lower limbs and
is currently being trained for the shoulder and upper limb muscles.

3.4. Integrating machine learning approaches in data analysis

Anna Pichiecchio (Italy) presented bridging the qualitative and
quantitative gap in clinical radiomics. QMRI provides crucial insights as
a non-invasive tool in assessing disease involvement and progression in
NMD. However, qMRI is currently limited to specialized centers for the
need of specific sequences and post processing expertise. In contrast,
conventional MRI sequences such Short Tau Inversion Recovery (STIR)-
based sequences are more widely available in radiological departments,
with the limit of being qualitative sequences. Radiomics, a powerful tool
for extracting quantitative information from images offers the potential
to identify disease patterns by analyzing pixel intensity distributions and
spatial relationships in conventional MRI sequences. We investigated
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the possibility of obtaining quantitative inferior limb muscle biomarkers
from conventional STIR and water T2 mapping sequences by combining
feature extraction techniques with machine learning methods [70]. The
results show that the best model (k-nearest neighbours algorithm, KNN)
is a powerful predictor of QMRI parameters, achieving a mean absolute
error of + 5 percentage points for FF and + 1.8 ms for water T2, sup-
porting the potential of using conventional MRI for disease assessment
in NMD, even though outcomes have to be better delineated in larger
cohorts and longitudinal studies.

Pierre Carlier (France) presented MYOWEB, a web service with a
graphic interface for the automatic segmentation of thigh and leg
muscles and for the generation of water T2 maps from any segment of
the body. The automatic segmentation algorithm makes use of a con-
volutional neural network and performs either a global or a per-muscle-
group segmentation of out-of-phase Dixon images. The water T2 maps
are created by the separation of the water and fat components of multi-
TE spin echo images either by tri-exponential fitting or with the
extended phase graph algorithm. Image processing in batch mode is also
possible using command lines. MYOWEB access is provided for free for
non-profit use. Requests are to be sent to info@cris-nmr.com

3.5. Data sharing in international imaging platforms to integrate machine
learning

Giorgio Tasca (UK) presented challenges and opportunities for
building large cohorts for machine-learning based diagnostics and on an
ongoing project carried out at the John Walton Muscular Dystrophy
Research Centre in Newcastle upon Tyne called MyoGuide. Distinctive
patterns of muscle involvement have been identified as characteristic
markers for various NMDs and recognising them is helpful in the diag-
nostic workup [71-73]. However, the complexity and heterogeneity of
these patterns make their identification challenging and knowledge is
restricted to a limited number of experts in the field. MyoGuide ad-
dresses this issue by aiming to provide an automated solution for iden-
tifying and analysing patterns of intramuscular fat replacement through
custom muscle segmentation, a quantification pipeline, and a diagnostic
model. These tools, which are made available through the MyoGuide
web portal (www.myoguide.org), have the potential to transform the
analysis of muscle MRI by automatically detecting the most distinctive
patterns of muscle involvement, facilitating differential diagnosis, and
significantly reducing the analysis time. Previously published results on
a dataset of 10 muscular dystrophies were promising [29], and the
disease range has now been expanded to 20 different NMDs, confirming
the strong performance of the model [74].

Jodi Warman-Chardon (Canada) outlined the progress in the devel-
opment of NMD imaging cohorts and international MRI data sharing
platforms. She discussed the risks and benefits of sharing muscle MRIs
for clinical assessment and clinical trials. She reviewed MYO-Share, a
secure, online imaging portal to collect and view anonymized patient
muscle MRIs that was established to build large, rare NMD imaging
cohorts to help delineate disease-specific imaging patterns [75].
MYO-Share was developed based on recommendations of the MYO-MRI
consortium [76], which brings together top international specialists
(neuromuscular  neurologists, radiologists) (www.myo-mri.eu).
MYO-Share is now being leveraged to build large international rare
NMD patient cohorts in 20 countries with 100 investigators to increase
MRI use as a diagnostic imaging biomarker, to monitor disease pro-
gression and response to therapy [29].

4. Discussion
4.1. Workshop overview
This 286th ENMC Workshop on Al and Muscle MRI brought together

an interdisciplinary group of experts to identify clinical standards for
gMRI acquisition for diagnosis and longitudinal assessment (whole body
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vs lower extremity) and imaging storage. Jasper Morrow summarized
recommendations based on workshop discussions. He reviewed that
successful deployment of machine learning in diagnostic muscle MRI
depends on developing large, well-defined patient cohorts to validate
quantitative parameters and diagnostic algorithms, ensuring robust
clinical translation and evidence-based implementation of this advanced
imaging methodology for clinical translation. A standardized, rapid, and
reliable muscle gMRI protocol is essential for incorporating automated
segmentation and Al-driven diagnostic tools to identify characteristic
imaging patterns. To ensure broad accessibility and utility, a centralized
platform should support remote analysis, standardized uploads, and
ongoing model refinement, with potential for local deployment, full-
body imaging, and pharmaceutical trial applications.

4.2. Standardized reporting guidelines

Based on the preworkshop questionnaire outlined above, clinical
implementation of muscle MRI remains limited by a lack of knowledge
of the anatomy, time required to analyze all muscles and lack of readily
available reporting guidelines. Although the long-term objective of
integrating gMRI into routine clinical practice is widely endorsed due to
its superior sensitivity for detecting subtle pathological changes and
capacity for objective assessment, structured reporting guidelines and
interdisciplinary education for radiologists and neuromuscular special-
ists are essential to support consistent implementation in clinical prac-
tice. Sarah Schlager outlined the recently created German
neuroradiology guidelines for reporting for MRI [77,78]. Based on those
guidelines, previous recommendations [8] and the input during and
after the ENMC workshop, we drafted a reporting outline (Appendix 1)
for clinical radiologists.

4.3. Protocol recommendations

The lack of standardization of QMRI protocols in clinical use and
research limits multicentre comparison for clinical studies. Many centres
are currently acquiring muscle MRI using turbo spin-echo (TSE)-based
T1 weighted images to assess the extent of fat replacement and fat-
suppressed STIR TSE-based T2 weighted images to assess hyperintense
signal related to disease activity (such as edema, inflammation). These
qualitative scans miss the opportunity to collect quantitative data for
clinical analysis and future studies. Moreover, STIR can be prone to
artifacts such as surface coil artifacts, causing nonuniformity in the
signal. Therefore, when possible, centres should move towards routinely
integrating clinical NMD imaging with quantitative imaging techniques.
Consensus was reached that the imaging protocol should preferably
contain a whole-body Dixon for FF, and if needed either a spin-echo
Dixon or MESE for water T2. These sequences can be used for qualita-
tive diagnosis and may require less scan time than a typical T1 weighted
image. As well as assessed qualitatively for routine clinical use, gqMRI
scans can be assessed by manual or automatic segmentation for natural
history studies or baseline for response to therapy.

4.4. Segmentation

Improved methods for both individual and group muscle segmenta-
tion are essential to enhance the accuracy and consistency of qMRI
analysis. While manual delineation of ROIs varies by disease and anat-
omy, maintaining internal consistency is critical. For example, muscles
may be traced around their full contour or using a minimal area
threshold. A common strategy discussed was tracing the muscle edge
followed by a one-pixel erosion to reduce partial volume effects, which
is particularly important for small muscles. Post-processing choices
include selecting appropriate image types (e.g., Dixon-derived in-phase,
Dixon-derived out-of-phase images or acquired water-fat in-phase and
out-of-phase) and using both baseline and follow-up scans in a blinded
fashion. For CSA measurements, tracing at the muscle edge and also
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eroding by one acquisition voxel may be implemented, while acquiring
the maximal possible muscle volume during imaging allows for more
precise alignment and analysis during post-processing.

Training for manual muscle segmentation should incorporate clear
benchmarks for reliability, including reference standards and validated
metrics [18]. Individual segmenters require rigorous training, supported
by structured resources such as training manuals, direct instruction, and
annotated MRI scans covering both large and small regions of interest
(ROIs). While multiple observers may share the workload to allow
inter-rater comparisons, consistency is best maintained when the same
segmenter analyzes baseline and follow-up scans for each subject. ROI
delineation should use all available image types, tracing full muscle
borders and aligning volumes retrospectively using both baseline and
repeat scans. Ideally, a single reader should segment the muscle MRI
images for each subject’s data in longitudinal studies, although multiple
trained readers may segment across different subjects if needed.
Whereas single-muscle values remain important for diagnosis, averaging
FF values across muscle groups can enhance sensitivity for detecting
disease progression in trials [25,37,51,79]. Developing standardized
atlases and training materials will be crucial to improve segmentation
reproducibility and diagnostic reliability.

There are multiple different automatic segmentation algorithms in
development [32,58,74,80,81]. The potential for comparing automatic
muscle segmentation tools was discussed, including the development of
a standardized “segmentation challenge,” analogous to Hackathons, to
compare algorithm performance. Such an initiative would involve the
use of standardized MRI datasets from individuals with various NMDs
and healthy controls. Evaluation metrics, including Hausdorff Distance
(HD), SRM and DSC, should be employed to assess segmentation accu-
racy and robustness across common technical variables, including slice
gap variation and disease-specific muscle pathology. Importantly, the
workshop emphasized the need for strategic investment in infrastructure
to support the clinical implementation of automated segmentation,
including funding from the European Union and other governmental
support, as well as partnerships with industry leaders such as Philips,
GE, and Siemens. Developing clinic-ready solutions has the potential to
significantly advance diagnostic precision and longitudinal monitoring
in both routine care and NMD clinical trials.

4.5. Data sharing

Robust data sharing practices for MRI are essential to support mul-
ticentre clinical trials and longitudinal studies, as well as testing and
training of automated segmentation algorithms. Standardization of
acquisition protocols and post-processing methods is necessary to ensure
comparability across sites. Ideally, a centralized facility should oversee
offline post-processing to maintain consistency. MRI data should be
stored in a standardized data storage and sharing format such as ORMIR-
MIDs format (https://github.com/ormir-mids). Adherence to a common
data saving structure, such as ORMIR-MIDs, is crucial for enabling
downstream analyses, including post-processing, harmonization, and
cross-centre comparisons. Discussions emphasized the importance of
harmonizing data sharing practices to increase the availability of data-
sets, particularly for natural history studies. There was strong consensus
that imaging data collected during natural history studies and clinical
trials should be made publicly available, as is already being done within
some NMD communities, such as in FSHD [82]. To encourage pharma-
ceutical and biotech companies to contribute data, workshop partici-
pants suggested that data-sharing clauses be incorporated into trial
contracts.

Establishing a reference database, including age- and system-specific
normative datasets, is essential for comparative studies. For example,
the NIH has created a nuclear magnetic resonance database of over 400
healthy individuals, which can serve as a comparative baseline. Imaging
biomarkers, such as FF and water T2, should be interpreted in the
context of age-related changes and scanner-specific variability, akin to
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how laboratory values are interpreted with respect to reference ranges
and acceptable margins of error following upgrades or protocol changes.
Also, developing a centralized repository that supports multiple scanner
types (e.g., Siemens, Philips 3T) and field strengths would be similar to
existing frameworks for systematic analysis and would help account for
platform-specific differences.

The discussion further highlighted current limitations in muscle
gMRI techniques, particularly regarding the interpretation of FF values.
Reliable use of FF measurements requires normative data for each
muscle, as certain muscles—such as the gluteus maximus and lower
paraspinals—naturally exhibit higher FF with age. Reference values
(presented as mean + standard deviation) are needed across scanner
platforms, but existing literature is insufficient to establish compre-
hensive site-specific norms. This variability is analogous to clinical
laboratory testing, where acceptable ranges may differ by machine but
retain clinical validity. Technical constraints also include floor and
ceiling effects; for instance, Dixon-based methods have a noise floor of
approximately 5-6 %, limiting the detection of very low FF values. Ac-
curate quantification requires control datasets, ideally including at least
50 healthy subjects per site, to establish local reference databases for
software validation. Although FF differences of 1-2 % may not be
clinically meaningful, changes of >10 % could significantly impact trial
outcomes.

Privacy concerns surrounding MRI data sharing were also discussed,
as they pose a significant challenge for collaborative rare disease
research. The General Data Protection Regulation (GDPR) in Europe
provides robust safeguards for personal data but also places strict con-
straints on how imaging data can be stored, processed, and shared across
borders. Because muscle MRI scans can inadvertently capture identifi-
able features, such as facial structures or unique body characteristics,
there is a growing risk of re-identification through advanced facial
recognition algorithms. To mitigate this, certain MRI protocols have
been adapted to exclude the head or facial regions altogether, focusing
only on relevant muscle groups to reduce privacy risks. However,
completely eliminating identifying features while maintaining diag-
nostic quality can be technically challenging, especially in diseases
involving cranial or bulbar muscles. Moreover, differences in privacy
legislation between countries add further complexity, as data transfers
must comply with local regulations while supporting international
research collaborations. Workshop participants emphasized the impor-
tance of developing standardized anonymization pipelines and secure,
encrypted data storage solutions to protect patient confidentiality. In
addition, clear consent procedures must be implemented to inform pa-
tients about how their data will be used, shared, and protected
throughout multi-centre studies. Achieving a balance between strict
privacy compliance and open, FAIR (Findable, Accessible, Interoper-
able, Reusable) data sharing is essential to advance qMRI applications in
NMD. Future efforts should include cross-border agreements and tech-
nical safeguards that enable secure data exchange while maintaining the
highest standards of patient privacy and ethical research practice.

In summary, this ENMC workshop underscored the urgent need for
standardized, robust, and accessible muscle qMRI protocols to advance
diagnosis and monitoring in NMD and eventually the implementation of
gMRI in the clinical routine. Participants highlighted key challenges,
including limited anatomical expertise, inconsistent reporting, and
technical constraints that hinder clinical adoption, longitudinal assess-
ments and multicentre comparability. Consensus recommendations
emphasized implementing whole-body imaging where feasible, devel-
oping rigorous training resources for manual segmentation, and
expanding data sharing through harmonized platforms and privacy-
conscious frameworks. Strategic investment in infrastructure, industry
partnerships, and clear data standards will be critical for integrating
automatic segmentation and Al-driven tools to more effectively incor-
porate quantitative imaging biomarkers into routine practice and clin-
ical trials. Ultimately, these collective efforts aim to accelerate evidence-
based use of muscle MRI, improve objective assessment, diagnostic
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accuracy, and strengthen the design and execution of future therapeutic
studies.
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