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A B S T R A C T

Quantitative muscle MRI (qMRI) has emerged as a promising non-invasive biomarker for assessing neuromus
cular diseases (NMDs). However, clinical implementation is limited by the significant time required for manual 
muscle segmentation, which restricts analysis to limited muscle regions rather than comprehensive whole-muscle 
assessment. The 286th European NeuroMuscular Centre (ENMC) workshop brought together 18 international 
participants from 10 countries to establish consensus on optimal qMRI acquisition protocols and automated 
analysis tools, revealing that while most centers utilize qMRI techniques, barriers to manual segmentation 
include limited expertise and excessive time requirements. Automated segmentation methods using machine 
learning architectures, particularly 3D U-Net models, have demonstrated promising results for individual muscle 
segmentation. Multi-center studies are starting to implement standardized protocols, while machine learning 
approaches can distinguish among many NMDs with higher accuracy than human experts. Data sharing plat
forms and federated learning approaches address the need for larger NMD cohorts with standardized and vendor- 
agnostic data formats, while maintaining patient privacy. The integration of automated 3D muscle segmentation 
tools integrated into clinical workflows represents a transformative advancement to revolutionize diagnosis, 
disease monitoring, and therapeutic assessment in NMDs. This consensus workshop provides a roadmap for 
accelerating the translation of qMRI from research tools to clinically implemented biomarkers for NMD 
management.

1. Introduction and background

Multiple novel therapies are in development for neuromuscular 
diseases (NMDs). However, assessing the efficacy of these promising 
treatments is limited by the lack of sensitive, standardized and repro
ducible methods to assess subtle disease progression or therapeutic 
response [1,2]. Magnetic resonance imaging (MRI), and particularly 
quantitative muscle MRI (qMRI), has emerged as a non-invasive imaging 
biomarker to distinguish important structural changes like fat replace
ment, muscle volume and edema in NMDs [3–8]. Qualitative and 

semi-quantitative MRI studies have demonstrated characteristic imag
ing patterns using visual and signal-density assessment of fat replace
ment to provide a diagnostic pattern for several NMDs [8–11]. Although 
qualitative imaging analysis permits subjective categorising of disease 
features, such as the extent of signal intensity on T1 weighted and T2 
weighted MRI protocols, qMRI techniques are more sensitive in 
detecting subtle changes and offer a more objective assessment [5,12,
13]. QMRI techniques, including chemical-shift-based-fat-water (Dixon) 
imaging techniques, transversal relaxation time (T2) mapping (either 
water T2 or global T2), and diffusion tensor imaging, are more sensitive 

* Corresponding author.
E-mail address: jwarman@toh.ca (J. Warman-Chardon). 

Contents lists available at ScienceDirect

Neuromuscular Disorders

journal homepage: www.elsevier.com/locate/nmd

https://doi.org/10.1016/j.nmd.2025.106304
Received 1 December 2025; Accepted 7 December 2025  

Neuromuscular Disorders 60 (2026) 106304 

Available online 8 December 2025 
0960-8966/© 2025 Published by Elsevier B.V. 

https://orcid.org/0000-0002-0187-2199
https://orcid.org/0000-0002-0187-2199
mailto:jwarman@toh.ca
www.sciencedirect.com/science/journal/09608966
https://www.elsevier.com/locate/nmd
https://doi.org/10.1016/j.nmd.2025.106304
https://doi.org/10.1016/j.nmd.2025.106304


to the variable pathological changes in muscle tissue, compared to 
traditional semi-quantitative visual assessment of muscle fat/edema 
[13–21]. Beyond diagnostic applications, qMRI approaches are 
emerging as sensitive and reproducible biomarkers, and provide evi
dence of disease progression, which is critical for use in clinical trials 
[22,23]. Yet, the challenges of the scarcity of annotated qMRI scans, the 
variable NMD progression in each muscle and the high number and 
rarity of different NMDs, all provide barriers to using qMRI to identify 
diagnostic patterns and to assess disease progression or therapeutic 
response in research settings. The current necessity of time-consuming 
manual segmentation and the inaccuracy of automated segmentation 
algorithms hinder clinical implementation.

For qMRI, muscle segmentation is required to identify muscle regions 
of interest (e.g., to extract quantitative parameters of muscles) and to 
distinguish them from subcutaneous and perimuscular adipose tissues 
and bone. Manual muscle segmentation is operator dependent and 
extremely time-consuming, which has limited the clinical implementa
tion of qMRI and evaluation of these biomarkers in large cohorts [1]. 
Consequently, qMRI analyses are typically performed on part of a limb 
only using a limited number of slices in the center of the limb [5,12,24,
25]. This also limits the ability to fully assess the entire length of the 
involved muscle, which may be differentially affected in regions of the 
proximal-distal axis [26–28]. A full whole-muscle fat assessment would 
therefore provide a better way of identifying disease progression. There 
is a critical need for the integration of reliable automatic 3D segmen
tation methods over the whole limb and throughout the length of the 
muscle to improve diagnosis and disease progression for clinical trials.

More recently, machine learning strategies have been able to 
distinguish >10 NMDs based on MRI scans, depicting fat replacement 
with higher accuracy than human experts in the field. This provided a 
critical proof of concept demonstrating that artificial intelligence (AI) 
can be applied to the field of muscle MRI in NMD [29,30]. However, 
given the burden of time and expertise required for scoring images 
across a large range of hundreds of NMDs, automatic segmentation 

methods and feature extraction are required [31]. Several AI-enabled 
automated segmentation methods aim to segment individual muscles 
(or muscle groups), using data from numerous acquired MRI slices to 
permit more complex analyses, to reduce processing times and to 
eliminate interobserver bias [1,31,32]. However, automation of muscle 
segmentation in MRI is very challenging in NMD where muscle borders 
are obscured by severe fat replacement, given the poor contrast between 
different muscles and the large variability of muscle shapes [1,32].

The 286th ENMC international workshop was held in Hoofddorp, 
The Netherlands, from March 7th-9th, 2025 to discuss barriers and 
strategic opportunities for implementation of qMRI techniques and 
assessment tools. The workshop assembled 18 participants from 10 
countries, including France, Italy, The Netherlands, Denmark, Belgium, 
Switzerland, Germany, Canada, United States of America (USA) and 
United Kingdom (UK), comprising clinicians and researchers from 
NMDs, MRI and machine learning disciplines. The aims for this work
shop were to establish international consensus for optimal muscle qMRI 
acquisition protocols, data storage and post-processing and analysis 
tools to increase clinical trial readiness internationally; review manual 
and automated imaging segmentation methods and discuss their reli
ability, reproducibility, and limitations in the context of NMD; review 
machine learning diagnostic approaches in MRI assessment and inter
national imaging sharing platforms to support building larger cohorts 
for machine learning while ensuring imaging security, patient privacy in 
qMRI.

2. Preworkshop questionnaire: Evaluating quantitative use of 
muscle MRI, muscle segmentation and data sharing

A preworkshop questionnaire was completed by attendees to assess 
current implementation of qMRI, muscle segmentation and data sharing 
(Fig. 1). Manual segmentation was widely used for natural history and 
therapeutic studies, but faced barriers to implementation, such as limi
tations in anatomical knowledge of the vast number of muscles across 

Fig. 1. Pre-workshop survey responses regarding muscle MRI utilization within participants' respective academic institutions. (A) Currently implemented muscle 
qMRI sequences; (B) Anticipated applications for expanded qMRI implementation; (C) Identified barriers limiting manual muscle segmentation adoption; (D) Ob
stacles to implementation of semi-automatic and automatic segmentation methodologies.
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their length, limited technical expertise, poor image quality, and time 
demands required for segmenting each muscle at different regions. 
Automatic or semi-automatic segmentation was employed by many 
centres, though challenges included insufficient tool quality, tool se
lection difficulties, and technical limitations, with most analyses 
focusing on the lower extremities. Automatic/semi-automatic segmen
tation was being used to assess thighs (17/19), lower legs (16/19), upper 
extremities (9/19), trunk and pelvis (2/19) and no participant assessed 
head muscles, skull or brain, reflecting the use of a longstanding focus of 
MRI for lower extremities. However, imaging solely the lower extrem
ities will miss some critical muscles for pattern recognition of specific 
disorders, such as tongue involvement in oculopharyngeal muscular 
dystrophy [21,33], and trapezius involvement with subscapularis 
sparing in facioscapulohumeral muscular dystrophy (FSHD) [34]. In 
addition, it is important to assess both sides individually given potential 
asymmetry of fat replacement or edema between limbs [28,35,36]. Data 
sharing relied on tools like MYO-Share and XNAT but was hindered by 
strict privacy regulations, incomplete consent, and technical constraints. 
For this survey, it is important to note that survey respondents 
comprised ENMC workshop attendees who were specifically invited 
based on their expertise in muscle segmentation and therefore may not 
be representative of the broader muscle MRI research community.

3. Muscle imaging: Artificial intelligence, automatic 
segmentation and imaging data sharing in neuromuscular 
disease workshop sessions

Following introductory remarks by Patricia van Dongen, Programme 
Manager of ENMC, Volker Straub, (UK), opened the 286th ENMC 
workshop by outlining the importance of assembling the required 
expertise to establish international consensus for optimal muscle qMRI 
acquisition protocols, data storage, and post-processing and analysis 
tools to increase clinical trial readiness internationally. The workshop 
goals were highlighted, including optimizing and standardizing qMRI 
assessments, comparing segmentation methods, exploring machine 
learning applications, reviewing international imaging platforms, and 
addressing imaging security and patient privacy in NMD.

3.1. Current state of integrating qualitative MRI muscle segmentation: 
implications for clinical practice

Pierre Carlier (France) provided an overview of the standard muscle 
qMRI techniques. Under the hypothesis that a “standard” quantitative 
skeletal muscle imaging protocol exists, it can comprise Dixon imaging 
sequences, the multi-TE spin echo sequence (MESE) and the diffusion 
tensor imaging sequences (DTI), by decreasing order of popularity and 
use. With the Dixon sequences, muscle trophism and fat replacement can 
be determined. With the MESE sequence, water T2 maps are generated, 
which evaluate the disease activity while DTI sequences provide infor
mation on myocyte orientation, dimensions and permeability. Whole- 
body qMRI is possible with modern scanners even in a clinical envi
ronment, thanks to a variety of acceleration techniques combined with 
AI denoising. For instance, whole body 3D Dixon with isotropic milli
metric resolution is currently obtained in 4 to 10 minutes at 1.5T.

Hermien Kan (The Netherlands) presented an overview of manual 
segmentation, including the technical factors influencing segmentation, 
the gold standard and quality metrics often used. Manual segmentation 
is used to delineate individual skeletal muscles, usually on transverse 
MR images. Segmentation aims to provide muscle or region specific 
qMRI values, which can, for instance, be volume, fat fraction (FF) or 
water T2, per slice and per muscle. This can be used to aid in the dif
ferential diagnosis of NMD, as these have different patterns of muscle 
involvement, and to assess disease progression over time. For any 
quantitative parameter to be used for these purposes, is the value ob
tained reproducible and repeatable. Quality metrics that are commonly 
used are the Dice-Sorensen coefficient (DSC), or the intra-class 

correlation coefficient (ICC). Especially if the purpose of segmentation is 
to provide biomarkers to assess disease progression or response to 
therapy, an important quality metric is the sensitivity to change and the 
relation to a functional outcome. The former can be assessed using the 
standardized response mean (SRM), and the latter by association to 
function – either cross-sectional or longitudinal. Dr. Kan explained that 
there are many factors influencing segmentation, which can be divided 
into parameters at the acquisition level and in post-processing. At the 
scan acquisition level, it is necessary that the field-of-view covers a large 
enough proportion of the muscle, preferably the whole muscle, as many 
NMDs have proximo-distal differences in muscle involvement within the 
muscles [27,37–39]. Also, scan resolution needs to be sufficiently high 
to be able to delineate muscle borders. In post-processing, it is important 
that there is either landmark with fixed distance to a bone, or the 
insertion of a muscle, to make sure that assessments are done at the same 
level of the muscle between subjects, and over time. Finally, there are 
several practical considerations when drawing the regions of interest 
(ROIs) when segmenting muscle. This includes which type of images are 
used for drawing ROIs, whether muscles are delineated at the muscle 
border, whether to include all acquired slices in the analysis, whether 
single muscles are reported or muscle groups, and whether a single 
reader should draw all muscles within a study.

Harmen Reyngoudt (France) described the challenges for incorpo
rating manual muscle segmentation in multi-site analysis in the Inter
national Clinical Outcome Study for Dysferlin (COS experience). QMRI 
including Dixon-type sequences and water T2 mapping by MESE/Multi- 
Slice Multi-Echo (MSME) was part of the natural history Clinical 
Outcome Studies (COS) in dysferlinopathy funded by the Jain Founda
tion, in 14 different centers across the world (COS1 ran between 2012 
and 2018) [24,40,41]. Successful manual muscle segmentation requires 
high-quality and reproducible MRI data across multiple visits (acquisi
tion made with same central slice, volume, field-of-view, in-plane res
olution). Since there were 14 different centers acquiring qMRI data and 
two different centers analyzing these qMRI data in COS, the analysis 
plan was documented in detail in several standard operating procedures 
(SOPs). To ensure validity between different centers, an essential step 
was that both analysis sites segmented on the same slices, so that all 
qMRI-based outcome measures were from exactly the same anatomical 
location. ROIs were drawn twice but differently on the first-TE 
MESE/MSME images on 5 slices in thigh and lower leg (Fig. 2), by 
analysis team 1 delineating nicely the muscle contours for FF values but 
especially for precise assessment of contractile cross-sectional area 
(cCSA), and by analysis team 2 drawn inside the ROIs to avoid inter
muscular/subcutaneous fat and fasciae, for water T2 [24]. In both seg
mentations, visible blood vessels and tendons were avoided, and ROIs 
were eroded when including subcutaneous fat. A third rater verified 
coherence between both segmentations visually inspecting the ROIs 
drawn on the FF maps and the water T2 maps paying attention to (i) 
similarity of ROIs drawn by both teams and (ii) major errors made in 
segmentation of the smaller or more difficult muscles to draw, before all 
qMRI results were merged into a single file with a FF, cCSA and water T2 
value per muscle per visit per subject. For COS2 (which ran between 
2019 and 2023), the upper limb (arm and forearm) was also added to the 
qMRI protocol, with identical instructions for data analysis [42].

Francesco Santini (Switzerland) reviewed the imaging data formats 
and established ‘best practice’ standards in NMD imaging. Data sharing 
is key for modern research, especially in the current era of pervasive AI 
[43]. This is especially crucial in the field of NMD research, where the 
rarity of many NMD necessitates data collection from multiple centers. 
However, a high level of standardization is required for the efficient 
development of postprocessing and analysis tools, both in terms of 
acquisition modalities and in terms of data formats. The format sup
ported by most medical imaging platforms is the “Digital Imaging and 
Communications in Medicine” (DICOM) standard, which is a detailed 
and flexible description of image data and metadata. However, this 
inherent generality and flexibility made it less than ideal as a proper 
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standard, as each device manufacturer practically implements its own 
proprietary “flavor” within the general framework of the DICOM stan
dard, thus making the localization of relevant metadata for a specific 
purpose difficult in a reliable way [44]. For this reason, more specialized 
standards have been developed, starting with the Brain Imaging Data 
Structure (BIDS), a standardized way of organizing Neuroimaging 
Informatics Technology Initiative (NIfTI) imaging files in a folder 
structure and pairing it with metadata in Javascript Object Notation 
(JSON) format [45], subsequently extended to other districts and mo
dalities, where it is sometimes referred to as MIDS (Medical Imaging 
Data Structure) [46]. For musculoskeletal imaging, the Open and 
Reproducible Musculoskeletal (MSK) Imaging Research (ORMIR) com
munity (https://ormir.org) further developed the ORMIR-MIDS stan
dard and associated support software [47], building on a previous 
initiative by muscle MRI researchers (https://muscle-bids.github.io/). 
ORMIR-MIDS strives to be bidirectionally convertible with DICOM, 
inherently anonymous, and to describe the relevant metadata to be 
included in the JSON header for each common contrast used in muscle 
and MSK imaging. ORMIR-MIDS also provides a command-line tool for 
the conversion of DICOM data, automatically recognizing various con
trasts from the main MR scanner vendors, and thus converting each 
proprietary DICOM implementation into a common format, which can 
then be relied upon for the implementation of vendor-agnostic pipelines.

3.2. Implementing quantitative MRI and segmentation strategies in 
clinical practice

John Vissing (Denmark) reviewed challenges for incorporating 
manual muscle segmentation. The largest obstacle is the highly time- 
consuming workload of manual muscle segmentation, which precludes 
segmenting multiple sections along the whole length of the muscle. By 
just evaluating one or a few muscle sections, some muscle abnormalities 
may be missed between the two insertion points and the CSA can be 
underestimated. Also, identifying the pattern of proximal-distal 
involvement of a muscle can be missed. In longitudinal studies, seg
mentation of just one or a few slices also creates problems in finding the 
same location for the section at follow-up. The question is also whether 
to segment directly at the edge of the fascia or just within the fascia to 
ensure that proper muscle tissue volume is assessed. For CSA estimates, 
measuring on the fascia is preferred. A common issue is manual and 

automatic segmentation of almost end stage muscle, where muscle 
boundaries are difficult to define. However, end stage muscles do not 
change over time and do not respond to currently known therapeutic 
interventions. Therefore, this technical issue of assessment is less clini
cally relevant. Automatic segmentation techniques are increasingly 
being utilized, and this removes variability in interrater segmentation. 
Lastly, he briefly mentioned the development plan for a Danish AI 
muscle segmentation tool, which is currently in the final deep learning 
round using an iterative training and correction process.

Glenn Walter (USA) discussed manual segmentation for a Duchenne 
Muscular Dystrophy (DMD) cohort and regulatory challenges using MRI 
as a recognized biomarker for trials. MR imaging has become a critical 
tool for monitoring disease progression and evaluating therapeutic in
terventions in DMD. This study highlights the role of manual segmen
tation in standardizing MRI analyses, ensuring reproducibility, and 
improving biomarker sensitivity across clinical trials. The ImagingDMD 
initiative has expanded significantly, facilitating multi-center studies 
aimed at accelerating therapeutic development. Standardization efforts 
include detailed standard operating procedures (SOPs), training of 
image readers, use of multiple contrast techniques, and strict quality 
assurance measures. MRI and MRS, including maximal CSA (CSAmax), 
global T2, and FF, were highly reproducible across sites, with co
efficients of variation (CV) ranging from 2 % to 7 %. Landmark-based 
segmentation methods enhance consistency in morphometric analysis, 
particularly in the thigh and lower leg muscles, improving the detection 
of disease progression. Data acquisition and adjudication protocols 
incorporate blinded assessments to mitigate bias, ensuring robustness in 
clinical trial applications. Their findings support the implementation of 
standardized MRI protocols as reliable biomarkers for assessing muscle 
degeneration and therapeutic efficacy in DMD. The continued refine
ment of segmentation techniques and automated tools will further 
improve imaging-based outcome measures in NMDs.

Mauro Monforte (Italy) discussed the different imaging features in 
FSHD, and how they related to the well-known phenotypic heteroge
neity of the disease, ranging from the classical to the most complex and 
atypical clinical patterns. The Italian Clinical Network for FSHD is used 
to categorize patients according to a standardized Comprehensive 
Clinical Evaluation Form (CCEF) [48], that also incorporates uncommon 
features identified during clinical evaluation. The main patterns of 
preserved vs affected muscles and their combinations have been 

Fig. 2. qMRI in Jain COS in dysferlinopathy included two independent manual muscle segmentations performed on 5 slices of MESE/MSME data (first TE). Examples 
in one slice of thigh and lower leg are shown. Segmentations were slightly different depending on the qMRI-based outcome measure (FF/cCSA vs. water T2). The 
corresponding Dixon-based FF maps and MESE/MSME-based water T2 maps (with the subcutaneous fat masked) are also shown.
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described by MRI studies assessing large cohorts in FSHD, and further 
diagnostic value can be clearly added by scanning the upper girdle [34]. 
A simple pattern (trapezius involvement and bilateral subscapularis 
sparing) has been found to identify FSHD with high accuracy, also in 
atypical or cases with incomplete phenotypes [30]. Complex phenotypes 
in FSHD can also arise from a severe and predominant paraspinal muscle 
involvement, or, in some cases, due to double-trouble, like the 
co-occurrence with a distinct genetic NMD [49] or an acquired inflam
matory myopathy [50].

Jasper Morrow (UK) presented his experience of muscle segmenta
tion in inherited neuropathies. Using manual segmentation, calf muscle 
FF using Dixon MRI has consistently proven the most responsive 
outcome measure in this group of conditions [51]. Single slice analysis 
of all grouped muscles has been the most commonly used metric. Precise 
slice localization in the proximal-distal direction is crucial for improving 
reliability, which is facilitated by 3D Dixon acquisitions with a 
maximum of 5 mm slice thickness. Careful selection of patients and/or 
anatomical level for analysis can markedly increase outcome measure 
responsiveness by avoiding floor and ceiling effects [52]. Appropriate 
training of segmenters is also crucial and he outlined the training pro
gramme used at University College London, UK [18]. The quality of the 
segmentation can be assessed by reference to gold standard segmenta
tions, or through assessing test-retest or longitudinal datasets. Seg
mentation is now performed using automated methods [53] requiring 
minimal changes during a quality control step [19]. Automated seg
mentation is more time efficient and allows for more detailed analysis of 
datasets.

3.3. Automatic muscle segmentation in NMD – current techniques, 
overcoming challenges in clinical practice

Lara Schlaffke (Germany) reviewed automated segmentation chal
lenges in muscle MRI. In an ideal world, clinicians would routinely ac
quire whole-body quantitative images from all patients, which would 
then be automatically segmented, analyzed, and reported to neurolo
gists for diagnosis and disease progression monitoring. These images 
would be uploaded to a centralized server, making them accessible to 
researchers. However, several challenges must be overcome to achieve 
this vision. One key challenge is improving communication among the 
main stakeholders—radiologists, neurologists, and scientists—to estab
lish a shared understanding of clinical requirements and research ob
jectives. Theoretical challenges include reconciling the differing optimal 
approaches for image acquisition, processing, and segmentation when 
used for diagnostic purposes versus longitudinal follow-up. Practical 
challenges involve ensuring sustainable system maintenance, addressing 
personnel and financial constraints, and defining responsibilities for 
outcome validation. For automated segmentation to be effectively used 
in reporting whole-body quantitative outcome measures in patients 
suspected of having NMDs, it is essential to establish clear communi
cation regarding clinical and research needs, technological possibilities, 
and future objectives.

Francesco Santini (Switzerland) spoke about centralized federated 
learning in automatic segmentation. While the prevalence of NMDs, 
collectively, is roughly equivalent to other better-studied disorders such 
as multiple sclerosis or Parkinsons disease [54], each of them classified 
as less common diseases, making any type of data-driven modeling 
challenging, unless data from multiple centers are collated. However, in 
healthcare, legal and practical hurdles make sharing patient data diffi
cult and labor-intensive [55], and it is therefore attractive to train 
models in a decentralized fashion, in so-called federated learning [56]. 
In this context, multiple institutions keep the data private from each 
other, and each of them independently train a model; the models are 
then centrally collected by a server and aggregated, before being 
redistributed for another round of training. The performance of such a 
system has been found to be similar to centralized learning [57]. A 
variant of this system (termed continuous collaborative learning) is 

present in the free software Dafne [58] (Deep Anatomical Federated 
Network, https://dafne.network/), in which a graphical interface is 
provided to the end user. The user can use a segmentation model, which 
is downloaded from a central server, to provide an automatic segmen
tation of the desired anatomical region. The user can then use manual 
tools to refine the proposed segmentation, and these modifications are 
then used to retrain the model locally on the user’s data. The model is 
then sent back to the server, validated on server-stored data, and, if 
successful, merged with the baseline model and made available to the 
next user. While this approach allows the model to improve its gener
alization capabilities, the lack of a-priori data curation might make the 
performance of the model unstable over time. In fact, centralized, 
federated, and collaborative learning each fit different and comple
mentary needs. Centralized learning provides the highest control over 
the input and is ideal when a model needs to be applied to homogeneous 
data, but it also requires high computational resources. Traditional 
federated learning requires lower resources, but also all data to be 
available at the same time, although not in the same place, to perform 
the federated rounds; input control is more limited but can still be co
ordinated. The Dafne approach, on the other hand, is the least resource 
intensive, but does not allow a-priori control over the data quality, and it 
therefore allows for the highest generalizability potential, at the cost of 
slower convergence and potential performance instability.

Martijn Froeling (The Netherlands) outlined AI-based segmentations 
and analysis for muscle MRI with standards for image acquisition and 
automated data processing. Dr. Froeling described the MOTION study at 
UMC Utrecht, where bilateral lower extremities of 162 healthy partici
pants will be scanned using Dixon-based imaging, water T2 mapping, 
and DTI with fiber tractography [59]. To analyze this data, automated 
processing is employed, relying on the ORMIR-MIDS data structure and 
the QMRITools processing toolbox [60]. An essential part of this study is 
per-muscle analysis. To facilitate this, a lightweight 3D U-Net for auto
mated segmentation was created. Since the U-Net architecture was first 
proposed [61], many variants have been developed; however, the most 
successful adaptation is nnU-Net [62]. This framework focuses on data 
fingerprinting and proper configuration of the network rather than 
tweaking the network itself. Since its introduction, it has become a 
useful tool for muscle segmentation, even in muscle diseases [63]. 
Training a U-Net, especially in 3D, can require heavy computational 
resources. Therefore, focus has been on developing a U-Net optimized 
for the segmentation of either lower or upper leg muscles. Because the 
network is optimized for one specific data type and task, the computa
tional resources required for training are minimized. Furthermore, the 
use of heavy data augmentation to reduce the amount of data needed for 
training is essential. The segmentation network is fully integrated into 
the automated processing software. Applying a trained neural network 
to data is possible in most programming environments. However, inte
grating such a network into existing processing software and allowing it 
to be automated typically requires more effort. To facilitate the use of 
tools on other datasets, it is recommended that tools are made 
compatible with the BIDS data structure, and all commands can be run 
from the command line so that they can be easily integrated into existing 
processing scripts. To accelerate automated data processing, it is 
important that data preprocessing is considered when designing a study 
and the data is well curated. Standardized acquisition protocols are used 
where possible while still allowing sufficient freedom for customization 
where needed. It is unrealistic to expect that any type of data can be used 
for any processing pipeline. Most tools will have limitations or require 
specific data formats to function properly. Most free tools are a com
munity effort and benefit from user input, feedback, and even contri
butions to development when needed.

John Thornton (United Kingdom) described work aiming to move 
qMRI with AI enabled segmentation towards implementation in clinical 
radiology practice. QMRI outcome measures have been developed to 
improve trials of new treatments for people with a wide range of NMD. 
There is now a need to make these methods practically available to 
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support diagnosis and treatment decisions, and improve follow-up, for 
individual patients. One model for this is the Quantitative Neuroradi
ology Initiative [64], which aims to make available to reporting radi
ologists, within their routine workflow, graphical summaries of key 
qMRI readouts. The MRI readouts must have a clear evidence base for 
their clinical value, healthy population reference data must be available, 
and a visual report format should be designed with technical and clinical 
validation prior to clinical deployment. A significant challenge is the 
integration within hospital information systems, so that qMRI reports 
are available at PACS workstations following automated analysis and 
automated data routing, with software developed under quality man
agement satisfying regulatory requirements. He described the imple
mentation of a model software infrastructure on this basis [65], allowing 
them to deploy, as a first exemplar application, a qMRI radiology report 
for epilepsy patients now used routinely in the hospital [66]-. They 
recently established the MuscleQuant project to adapt this approach to 
benefit patients with NMD. AI deep learning enabled automatic image 
segmentation is a core enabling technology [19,53]. Developing an 
appropriate graphical muscle qMRI report is the focus of current 
research – a pressing open question is to resolve which are the most 
important MRI readouts to include in the quantitative radiology report 
to inform patient management and treatment decisions for specific 
NMDs.

Kristl Claeys (Belgium) presented on automated MRI muscle seg
mentation in patients with NMD. She discussed the study of her research 
group on automated MRI quantification of volumetric per-muscle FF 
values in the proximal leg of patients with muscular dystrophies [67]. 
This study presents and evaluates a clinically relevant approach for the 
automated 3D segmentation of 18 individual muscles of the proximal leg 
from knee to hip in healthy individuals and in patients with muscular 
dystrophies and mild to severe fat replacement, using deep learning 
models based on a 3D convolutional neural network (CNN) with U-Net 
architecture [68,69]. To deal with pathology, a separate model was first 
trained for healthy and mildly affected subjects (low level of fat 
replacement (LI)) and subsequently retrained and finetuned for more 
severe cases (high fat replacement group (HI)). She demonstrated the 
feasibility of quantifying FF automatically in 3D in individual muscles 
over a broad range of per-muscle FF values (4–92 %) with clinically 
acceptable accuracy compared to manual analysis. She reported good 
segmentation results of all 18 muscles individually in terms of overlap 
(DSC) with the manual ground truth delineation for images with low fat 
replacement (mean overall FF: 11.3 % [6–16.6]; mean DSC: 95.3 % per 
image, 84.4–97.3 % per muscle) as well as with medium and high fat 
replacement (mean overall FF: 44.3 % [18.6–82.1]; mean DSC: 89.0 % 
per image, 70.8–94.5 % per muscle). Results from a Bland-Altman 
analysis for quantification of FF and muscle volume in LI and HI cases 
showed that the FF per muscle obtained using the automated segmen
tation agrees well with the FF obtained using the ground truth delin
eation: for LI mostly <1 % (except for a few outliers due to gluteus 
minimus muscle); and HI: mostly <5 % [67]. The automated segmen
tation model has meanwhile been extended to the distal lower limbs and 
is currently being trained for the shoulder and upper limb muscles.

3.4. Integrating machine learning approaches in data analysis

Anna Pichiecchio (Italy) presented bridging the qualitative and 
quantitative gap in clinical radiomics. QMRI provides crucial insights as 
a non-invasive tool in assessing disease involvement and progression in 
NMD. However, qMRI is currently limited to specialized centers for the 
need of specific sequences and post processing expertise. In contrast, 
conventional MRI sequences such Short Tau Inversion Recovery (STIR)- 
based sequences are more widely available in radiological departments, 
with the limit of being qualitative sequences. Radiomics, a powerful tool 
for extracting quantitative information from images offers the potential 
to identify disease patterns by analyzing pixel intensity distributions and 
spatial relationships in conventional MRI sequences. We investigated 

the possibility of obtaining quantitative inferior limb muscle biomarkers 
from conventional STIR and water T2 mapping sequences by combining 
feature extraction techniques with machine learning methods [70]. The 
results show that the best model (k-nearest neighbours algorithm, KNN) 
is a powerful predictor of qMRI parameters, achieving a mean absolute 
error of ± 5 percentage points for FF and ± 1.8 ms for water T2, sup
porting the potential of using conventional MRI for disease assessment 
in NMD, even though outcomes have to be better delineated in larger 
cohorts and longitudinal studies.

Pierre Carlier (France) presented MYOWEB, a web service with a 
graphic interface for the automatic segmentation of thigh and leg 
muscles and for the generation of water T2 maps from any segment of 
the body. The automatic segmentation algorithm makes use of a con
volutional neural network and performs either a global or a per-muscle- 
group segmentation of out-of-phase Dixon images. The water T2 maps 
are created by the separation of the water and fat components of multi- 
TE spin echo images either by tri-exponential fitting or with the 
extended phase graph algorithm. Image processing in batch mode is also 
possible using command lines. MYOWEB access is provided for free for 
non-profit use. Requests are to be sent to info@cris-nmr.com

3.5. Data sharing in international imaging platforms to integrate machine 
learning

Giorgio Tasca (UK) presented challenges and opportunities for 
building large cohorts for machine-learning based diagnostics and on an 
ongoing project carried out at the John Walton Muscular Dystrophy 
Research Centre in Newcastle upon Tyne called MyoGuide. Distinctive 
patterns of muscle involvement have been identified as characteristic 
markers for various NMDs and recognising them is helpful in the diag
nostic workup [71–73]. However, the complexity and heterogeneity of 
these patterns make their identification challenging and knowledge is 
restricted to a limited number of experts in the field. MyoGuide ad
dresses this issue by aiming to provide an automated solution for iden
tifying and analysing patterns of intramuscular fat replacement through 
custom muscle segmentation, a quantification pipeline, and a diagnostic 
model. These tools, which are made available through the MyoGuide 
web portal (www.myoguide.org), have the potential to transform the 
analysis of muscle MRI by automatically detecting the most distinctive 
patterns of muscle involvement, facilitating differential diagnosis, and 
significantly reducing the analysis time. Previously published results on 
a dataset of 10 muscular dystrophies were promising [29], and the 
disease range has now been expanded to 20 different NMDs, confirming 
the strong performance of the model [74].

Jodi Warman-Chardon (Canada) outlined the progress in the devel
opment of NMD imaging cohorts and international MRI data sharing 
platforms. She discussed the risks and benefits of sharing muscle MRIs 
for clinical assessment and clinical trials. She reviewed MYO-Share, a 
secure, online imaging portal to collect and view anonymized patient 
muscle MRIs that was established to build large, rare NMD imaging 
cohorts to help delineate disease-specific imaging patterns [75]. 
MYO-Share was developed based on recommendations of the MYO-MRI 
consortium [76], which brings together top international specialists 
(neuromuscular neurologists, radiologists) (www.myo-mri.eu). 
MYO-Share is now being leveraged to build large international rare 
NMD patient cohorts in 20 countries with 100 investigators to increase 
MRI use as a diagnostic imaging biomarker, to monitor disease pro
gression and response to therapy [29].

4. Discussion

4.1. Workshop overview

This 286th ENMC Workshop on AI and Muscle MRI brought together 
an interdisciplinary group of experts to identify clinical standards for 
qMRI acquisition for diagnosis and longitudinal assessment (whole body 
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vs lower extremity) and imaging storage. Jasper Morrow summarized 
recommendations based on workshop discussions. He reviewed that 
successful deployment of machine learning in diagnostic muscle MRI 
depends on developing large, well-defined patient cohorts to validate 
quantitative parameters and diagnostic algorithms, ensuring robust 
clinical translation and evidence-based implementation of this advanced 
imaging methodology for clinical translation. A standardized, rapid, and 
reliable muscle qMRI protocol is essential for incorporating automated 
segmentation and AI-driven diagnostic tools to identify characteristic 
imaging patterns. To ensure broad accessibility and utility, a centralized 
platform should support remote analysis, standardized uploads, and 
ongoing model refinement, with potential for local deployment, full- 
body imaging, and pharmaceutical trial applications.

4.2. Standardized reporting guidelines

Based on the preworkshop questionnaire outlined above, clinical 
implementation of muscle MRI remains limited by a lack of knowledge 
of the anatomy, time required to analyze all muscles and lack of readily 
available reporting guidelines. Although the long-term objective of 
integrating qMRI into routine clinical practice is widely endorsed due to 
its superior sensitivity for detecting subtle pathological changes and 
capacity for objective assessment, structured reporting guidelines and 
interdisciplinary education for radiologists and neuromuscular special
ists are essential to support consistent implementation in clinical prac
tice. Sarah Schlager outlined the recently created German 
neuroradiology guidelines for reporting for MRI [77,78]. Based on those 
guidelines, previous recommendations [8] and the input during and 
after the ENMC workshop, we drafted a reporting outline (Appendix 1) 
for clinical radiologists.

4.3. Protocol recommendations

The lack of standardization of qMRI protocols in clinical use and 
research limits multicentre comparison for clinical studies. Many centres 
are currently acquiring muscle MRI using turbo spin-echo (TSE)-based 
T1 weighted images to assess the extent of fat replacement and fat- 
suppressed STIR TSE-based T2 weighted images to assess hyperintense 
signal related to disease activity (such as edema, inflammation). These 
qualitative scans miss the opportunity to collect quantitative data for 
clinical analysis and future studies. Moreover, STIR can be prone to 
artifacts such as surface coil artifacts, causing nonuniformity in the 
signal. Therefore, when possible, centres should move towards routinely 
integrating clinical NMD imaging with quantitative imaging techniques. 
Consensus was reached that the imaging protocol should preferably 
contain a whole-body Dixon for FF, and if needed either a spin-echo 
Dixon or MESE for water T2. These sequences can be used for qualita
tive diagnosis and may require less scan time than a typical T1 weighted 
image. As well as assessed qualitatively for routine clinical use, qMRI 
scans can be assessed by manual or automatic segmentation for natural 
history studies or baseline for response to therapy.

4.4. Segmentation

Improved methods for both individual and group muscle segmenta
tion are essential to enhance the accuracy and consistency of qMRI 
analysis. While manual delineation of ROIs varies by disease and anat
omy, maintaining internal consistency is critical. For example, muscles 
may be traced around their full contour or using a minimal area 
threshold. A common strategy discussed was tracing the muscle edge 
followed by a one-pixel erosion to reduce partial volume effects, which 
is particularly important for small muscles. Post-processing choices 
include selecting appropriate image types (e.g., Dixon-derived in-phase, 
Dixon-derived out-of-phase images or acquired water-fat in-phase and 
out-of-phase) and using both baseline and follow-up scans in a blinded 
fashion. For CSA measurements, tracing at the muscle edge and also 

eroding by one acquisition voxel may be implemented, while acquiring 
the maximal possible muscle volume during imaging allows for more 
precise alignment and analysis during post-processing.

Training for manual muscle segmentation should incorporate clear 
benchmarks for reliability, including reference standards and validated 
metrics [18]. Individual segmenters require rigorous training, supported 
by structured resources such as training manuals, direct instruction, and 
annotated MRI scans covering both large and small regions of interest 
(ROIs). While multiple observers may share the workload to allow 
inter-rater comparisons, consistency is best maintained when the same 
segmenter analyzes baseline and follow-up scans for each subject. ROI 
delineation should use all available image types, tracing full muscle 
borders and aligning volumes retrospectively using both baseline and 
repeat scans. Ideally, a single reader should segment the muscle MRI 
images for each subject’s data in longitudinal studies, although multiple 
trained readers may segment across different subjects if needed. 
Whereas single-muscle values remain important for diagnosis, averaging 
FF values across muscle groups can enhance sensitivity for detecting 
disease progression in trials [25,37,51,79]. Developing standardized 
atlases and training materials will be crucial to improve segmentation 
reproducibility and diagnostic reliability.

There are multiple different automatic segmentation algorithms in 
development [32,58,74,80,81]. The potential for comparing automatic 
muscle segmentation tools was discussed, including the development of 
a standardized “segmentation challenge,” analogous to Hackathons, to 
compare algorithm performance. Such an initiative would involve the 
use of standardized MRI datasets from individuals with various NMDs 
and healthy controls. Evaluation metrics, including Hausdorff Distance 
(HD), SRM and DSC, should be employed to assess segmentation accu
racy and robustness across common technical variables, including slice 
gap variation and disease-specific muscle pathology. Importantly, the 
workshop emphasized the need for strategic investment in infrastructure 
to support the clinical implementation of automated segmentation, 
including funding from the European Union and other governmental 
support, as well as partnerships with industry leaders such as Philips, 
GE, and Siemens. Developing clinic-ready solutions has the potential to 
significantly advance diagnostic precision and longitudinal monitoring 
in both routine care and NMD clinical trials.

4.5. Data sharing

Robust data sharing practices for MRI are essential to support mul
ticentre clinical trials and longitudinal studies, as well as testing and 
training of automated segmentation algorithms. Standardization of 
acquisition protocols and post-processing methods is necessary to ensure 
comparability across sites. Ideally, a centralized facility should oversee 
offline post-processing to maintain consistency. MRI data should be 
stored in a standardized data storage and sharing format such as ORMIR- 
MIDs format (https://github.com/ormir-mids). Adherence to a common 
data saving structure, such as ORMIR-MIDs, is crucial for enabling 
downstream analyses, including post-processing, harmonization, and 
cross-centre comparisons. Discussions emphasized the importance of 
harmonizing data sharing practices to increase the availability of data
sets, particularly for natural history studies. There was strong consensus 
that imaging data collected during natural history studies and clinical 
trials should be made publicly available, as is already being done within 
some NMD communities, such as in FSHD [82]. To encourage pharma
ceutical and biotech companies to contribute data, workshop partici
pants suggested that data-sharing clauses be incorporated into trial 
contracts.

Establishing a reference database, including age- and system-specific 
normative datasets, is essential for comparative studies. For example, 
the NIH has created a nuclear magnetic resonance database of over 400 
healthy individuals, which can serve as a comparative baseline. Imaging 
biomarkers, such as FF and water T2, should be interpreted in the 
context of age-related changes and scanner-specific variability, akin to 
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how laboratory values are interpreted with respect to reference ranges 
and acceptable margins of error following upgrades or protocol changes. 
Also, developing a centralized repository that supports multiple scanner 
types (e.g., Siemens, Philips 3T) and field strengths would be similar to 
existing frameworks for systematic analysis and would help account for 
platform-specific differences.

The discussion further highlighted current limitations in muscle 
qMRI techniques, particularly regarding the interpretation of FF values. 
Reliable use of FF measurements requires normative data for each 
muscle, as certain muscles—such as the gluteus maximus and lower 
paraspinals—naturally exhibit higher FF with age. Reference values 
(presented as mean ± standard deviation) are needed across scanner 
platforms, but existing literature is insufficient to establish compre
hensive site-specific norms. This variability is analogous to clinical 
laboratory testing, where acceptable ranges may differ by machine but 
retain clinical validity. Technical constraints also include floor and 
ceiling effects; for instance, Dixon-based methods have a noise floor of 
approximately 5–6 %, limiting the detection of very low FF values. Ac
curate quantification requires control datasets, ideally including at least 
50 healthy subjects per site, to establish local reference databases for 
software validation. Although FF differences of 1–2 % may not be 
clinically meaningful, changes of ≥10 % could significantly impact trial 
outcomes.

Privacy concerns surrounding MRI data sharing were also discussed, 
as they pose a significant challenge for collaborative rare disease 
research. The General Data Protection Regulation (GDPR) in Europe 
provides robust safeguards for personal data but also places strict con
straints on how imaging data can be stored, processed, and shared across 
borders. Because muscle MRI scans can inadvertently capture identifi
able features, such as facial structures or unique body characteristics, 
there is a growing risk of re-identification through advanced facial 
recognition algorithms. To mitigate this, certain MRI protocols have 
been adapted to exclude the head or facial regions altogether, focusing 
only on relevant muscle groups to reduce privacy risks. However, 
completely eliminating identifying features while maintaining diag
nostic quality can be technically challenging, especially in diseases 
involving cranial or bulbar muscles. Moreover, differences in privacy 
legislation between countries add further complexity, as data transfers 
must comply with local regulations while supporting international 
research collaborations. Workshop participants emphasized the impor
tance of developing standardized anonymization pipelines and secure, 
encrypted data storage solutions to protect patient confidentiality. In 
addition, clear consent procedures must be implemented to inform pa
tients about how their data will be used, shared, and protected 
throughout multi-centre studies. Achieving a balance between strict 
privacy compliance and open, FAIR (Findable, Accessible, Interoper
able, Reusable) data sharing is essential to advance qMRI applications in 
NMD. Future efforts should include cross-border agreements and tech
nical safeguards that enable secure data exchange while maintaining the 
highest standards of patient privacy and ethical research practice.

In summary, this ENMC workshop underscored the urgent need for 
standardized, robust, and accessible muscle qMRI protocols to advance 
diagnosis and monitoring in NMD and eventually the implementation of 
qMRI in the clinical routine. Participants highlighted key challenges, 
including limited anatomical expertise, inconsistent reporting, and 
technical constraints that hinder clinical adoption, longitudinal assess
ments and multicentre comparability. Consensus recommendations 
emphasized implementing whole-body imaging where feasible, devel
oping rigorous training resources for manual segmentation, and 
expanding data sharing through harmonized platforms and privacy- 
conscious frameworks. Strategic investment in infrastructure, industry 
partnerships, and clear data standards will be critical for integrating 
automatic segmentation and AI-driven tools to more effectively incor
porate quantitative imaging biomarkers into routine practice and clin
ical trials. Ultimately, these collective efforts aim to accelerate evidence- 
based use of muscle MRI, improve objective assessment, diagnostic 

accuracy, and strengthen the design and execution of future therapeutic 
studies.
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[81] Martin S, André R, Trabelsi A, Michel CP, Fortanier E, Attarian S, et al. Importance 
of neural network complexity for the automatic segmentation of individual thigh 
muscles in MRI images from patients with neuromuscular diseases. Magma 2025; 
38:175–89.

[82] Monforte M, Attarian S, Vissing J, Diaz-Manera J, Tasca G, Attarian S, et al. 265th 
ENMC International Workshop: muscle imaging in Facioscapulohumeral Muscular 
dystrophy (FSHD): relevance for clinical trials. 22–24 April 2022, Hoofddorp, The 
Netherlands. Neuromuscul Disorder 2023;33:65–75.

J. Warman-Chardon et al.                                                                                                                                                                                                                    Neuromuscular Disorders 60 (2026) 106304 

10 

http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0044
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0045
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0045
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0045
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0046
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0046
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0046
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0046
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0047
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0047
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0047
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0047
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0048
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0048
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0048
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0049
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0049
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0049
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0050
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0050
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0050
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0050
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0051
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0051
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0051
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0052
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0052
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0052
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0053
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0053
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0053
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0053
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0054
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0054
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0054
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0055
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0055
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0055
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0056
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0056
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0056
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0056
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0056
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0057
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0057
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0057
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0058
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0058
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0058
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0058
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0059
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0059
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0059
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0060
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0060
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0062
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0062
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0062
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0063
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0063
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0064
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0064
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0064
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0065
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0065
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0065
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0065
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0065
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0066
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0066
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0066
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0067
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0067
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0067
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0068
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0068
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0068
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0069
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0069
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0069
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0069
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0070
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0070
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0070
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0070
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0071
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0071
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0071
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0072
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0072
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0073
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0073
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0073
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0074
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0074
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0074
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0074
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0075
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0075
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0075
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0076
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0076
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0076
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0077
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0077
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0077
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0078
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0078
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0078
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0079
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0079
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0079
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0080
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0080
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0080
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0081
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0081
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0081
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0081
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0082
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0082
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0082
http://refhub.elsevier.com/S0960-8966(25)01031-4/sbref0082

	286th ENMC international workshop: Muscle imaging: artificial intelligence, automatic segmentation and imaging data sharing ...
	1 Introduction and background
	2 Preworkshop questionnaire: Evaluating quantitative use of muscle MRI, muscle segmentation and data sharing
	3 Muscle imaging: Artificial intelligence, automatic segmentation and imaging data sharing in neuromuscular disease worksho ...
	3.1 Current state of integrating qualitative MRI muscle segmentation: implications for clinical practice
	3.2 Implementing quantitative MRI and segmentation strategies in clinical practice
	3.3 Automatic muscle segmentation in NMD – current techniques, overcoming challenges in clinical practice
	3.4 Integrating machine learning approaches in data analysis
	3.5 Data sharing in international imaging platforms to integrate machine learning

	4 Discussion
	4.1 Workshop overview
	4.2 Standardized reporting guidelines
	4.3 Protocol recommendations
	4.4 Segmentation
	4.5 Data sharing

	5 Workshop participants
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Supplementary materials
	References


